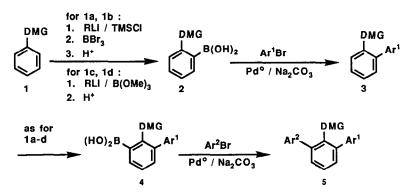
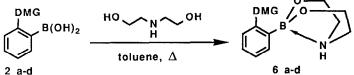
SYNTHETIC CONNECTIONS TO THE AROMATIC DIRECTED METALATION REACTION. FUNCTIONALIZED ARYL BORONIC ACIDS BY IPSO BORODESILYLATION. GENERAL SYNTHESES OF UNSYMMETRICAL BIPHENYLS AND


m-TERPHENYLS

M.J. Sharp, W. Cheng and V. Snieckus*

Guelph-Waterloo Centre for Graduate Work in Chemistry University of Waterloo, Waterloo, Canada N2L 3G1

Abstract: Aryl boronic acids **2a-d** and **4a-d** obtained by metalation- $B(OMe)_3$ or metalation silylation-ipso borodesilylation sequences, participate in efficient Pd[°]-catalyzed cross coupling reactions with aryl bromides to give unsymmetrical biphenyls **3a-d** and <u>m</u>-terphenyls **5a-d** respectively.


We have recently described¹ a general Pd-catalyzed cross coupling protocol² for the synthesis of unsymmetrical biaryls which takes advantage of the regiospecific construction of substituted benzamide 2-boronic acids by directed ortho metalation chemistry (1a + 2a). The efficacy of this method and the increasing interest in the preparation and properties of polyphenyls³ provided the impetus for the extension of the cross coupling tactic for the construction of <u>m</u>-terphenyls and higher order polyphenyls. Herein we report on a) the expansion of the cross coupling reaction to encompass the OCONR₂, OMOM, and NHCO₂t-Bu directed metalation groups 2a-d; b) a new ipso borodesilylation method to obtain the starting <u>o</u>-boronic acids (1a,b + 2a,b); and c) a sequential metalation-cross coupling procedure (3 + 4 + 5) for the synthesis of substituted <u>m</u>-terphenyls. As demonstrated in the accompanying letter,⁴ this work opens new methodological doors for rational entries into highy functionalized polyphenyl systems.

Scheme

The earlier metalation-B(OMe)₃ procedure for the preparation of the benzamide 2-boronic acid **2a** ¹ from **1a** has been superseded by a more efficient metalation-silylation-ipso borodesilylation method which is also applicable for the conversion of the corresponding carbamate **1b** into **2b**. Thus the <u>o</u>-silylated intermediates obtained from **1a** ⁵ and **1b** ⁶ were treated with BBr₃ (1.5 equiv/CH₂Cl₂/-78[°]C + RT)⁷ followed by acidic workup (5% aq HCl) to give **2a** and **2b** respectively in excellent yields. On the other hand, the corresponding methoxymethoxy and NHCO₂t-Bu arylboronic acids **2c** and **2d** bearing Lewis acid sensitive groups were prepared from **1c** and **1d** in modest yields using the metalation-B(OMe)₃ procedure.¹ For purification and characterization,⁸ compounds **2a-d** were converted into their more stable diethanolamine adducts **6a-d**.

When **2b** was subjected to the cross coupling conditions of Suzuki (ArBr as limiting reagent/3 mmol % of Pd(PPh₃)₄/2 M aq Na₂CO₃/toluene/reflux/6-12 h),^{2a} biphenyl carbamates (**Table, entries 1, 2**) were obtained in modest yields. Similarly, the methoxymethoxy (**2c**) and NHCO₂ \underline{t} -Bu (**2d**) derivatives led to analogous biphenyl products in good yields (entries 3, 4).

The synthesis of unsymmetrical <u>m</u>-terphenyls **5** (Scheme) was initiated by metalation-B(OMe)₃ or metalation-silylation-ipso borodesilylation sequences on **3a-d** according to the conditions, identical and corresponding, to those used for the preparation of the phenylboronic acids **2a-d**. Thus **3a** afforded the biphenyl boronic acid **4a** ⁹ which was coupled under conditions used for the preparation of **2a-b** to give functionalized <u>m</u>-terphenyls **5a** (**Table, entries 7, 8**). However, adaption of the Suzuki conditions to the carbamate and methyoxymethoxy biphenyls (**4b and 4c**) led to significant amounts (10-20%) of phenolic substances in addition to the desired coupling products. This could be avoided by using a modified Gronowitz procedure (3 equiv NaHCO₃/glyme/reflux/4-6 h)^{2b} which furnished the coupled <u>m</u>-terphenyls in good yields (**Table, entries 9-13**).

Thus we have demonstrated that the combination of aromatic directed metalation and transition metal-catalyzed cross coupling reactions offers a powerful and general synthetic strategy for the preparation of unsymmetrical, highly functionalized <u>m</u>-terphenyls which supersedes in scope and mild conditions the classical Ullmann and related reactions.^{3a} These results coupled with the further demonstration of iterative metalation-cross coupling tactics⁴

Table.	Synthesis of Unsymmetrical Biphenyls 3 and m-Terphenyls 5.				
Entry	Boronic Acid	Aryl Halide	Product ^a	Yield, % ⁶	mp (bp)
1	Et ₂ NOCO B(OH) ₂		Et2NOCO	52	120 (0.1 mm)
2	2 b	Br	Et ₂ NOCO OMe	55	105-115 (0.2 mm)
3	MOMO B(OH)2	Br OMe	MONO	90	124-125 (0.7 mm)
4	2 c	Br	MoMo	83	138-140 (0.45 mm)
5	t-BuO ₂ CNH B(OH) ₂	Br ~~ "		80	120-121 (hexane)
6	2 d	Br OM.		, ом е 59	127-128 (hexane)
7	CON(I-Pr)2 B(OH)2	Br		91	142-143 (Et ₂ O-hexane)
8	4 2	Br	CON(I-Pr)2	84	1 7 6-178 (Et ₂ O-hexane)
9	OCONEt ₂ B(OH) ₂	Br	OCONEt2	87	72.5-73.5 (Et ₂ O-hexane)
10	4 b	Br		75	215-220 (0.3 mm)
11	OMOM B(OH)2	Br		88	82.5-84.5 (hexane)
12	4 c	Br		73	61-62 (Et ₂ O-hexane)
13	HNCO ₂ t-Bu B(OH) ₂ 4 d	Br	HNC021-Bu	44 ^c	177-178.5 (Et ₂ O-hexane)

^a All compounds show analytical and spectral (IR,NMR,MS) data in accord with the assigned structures. ^b Yields are of chromatographically pure materials. ^c Based on recovered biphenyl (3d).

Table. Synthesis of Unsymmetrical Biphenyls 3 and m-Terphenyls 5.

constitute models for rational approaches to a variety of polyaryl systems of potential interest in macrocyclic chemistry. 10, 11, 12

Typical Experimental Procedures: Ipso Borodesilylation: A solution of BBr₃ (1.2 - 1.5 equiv) in CH_2Cl_2 was added by syringe to a stirred solution of the aryl silane derived from 1, DMG = $CON(i-Pr)_2$, $OCONEt_2$ (5 mmol) in anhydrous CH_2CI_2 (25 mL) at - 78°C under an argon atmosphere. The mixture was allowed to warm to room temp over 8 h, cooled to -78° C, and quenched with dry MeOH (4.5 equiv). 5% aq HCl was added at room temp and the resulting mixture was concentrated in vacuo. The aq slurry was extracted (CH_2CI_2) , dried (Na_2SO_4) , and evaporated to dryness in vacuo to afford the boronic acid 2 (>85% yield) as a foam which was used without purification. Gross Coupling: A stirred mixture of the aryl bromide (1 mmol), Ph(PPh₃)₄ (0.03 mmol) in toluene or glyme (25 mL) under nitrogen was successively treated with the aryl boronic acid (1.1 mmol), dissolved in a minimum volume of EtOH, and aq Na₂CO₃ solution (1.1 mL, 2M). The resulting mixture was heated at reflux for 8 h, cooled, subjected to filtration. The filtrate was evaporated to dryness in vacuo and the residue was treated with satd NaCl solution. The resulting mixture was extracted (CH_2Cl_2) , dried (Na₂SO₄), and evaporated to dryness to give material which was purified by flash chromatography (silica gel) and recrystallization or distillation.¹¹

References and Footnotes

- 1. Sharp, M.J.; Snieckus, V. Tetrahedron Lett. 1985, 5997.
- To the best of our knowledge, this method is due to Suzuki: a) Miyaura, N.; Yanagi, T.; Suzuki, A. <u>Syn. Commun.</u> **1981**, 11, 513. It has been extensively used by Gronowitz for 2. unsymmetrical heterobiaryl synthesis; b) Gronowitz, S.; Lawitz, K. Chem. Scripta, 1984, 24,
- unsymmetrical neteroblary syntnesis; D) Gronowitz, S.; Lawitz, K. Chem. Scripta, 1984, 24 5 and references therein; c) See also Thomson, W.J.; Gaudino, J. J. Org. Chem. 1984, 49, 5237; Miller, R.B.; Dugar, S. Organometallics, 1984, 3, 1261. Reviews: a) Ried, W.; Freitag, D. Angew. Chem. Internat. Ed. Engl. 1968, 7, 835; Ames, G.R. Chem. Rev. 1958, 58, 895. Recent work: b) Tius, M.A.; Savariar, S. Synthesis, 1983, 467; Stahly, G.P. J. Org. Chem. 1985, 50, 3091; Harada, K.; Hart, H.; Du, F.C.-J. ibid. 1985, 50, 5524 and references cited therein. Cheng W. Spieckus V. Tetrahadron Lett. 3.
- 4.
- 5.
- 6.
- Cheng, W.; Snieckus, V. Tetrahedron Lett. accompanying Letter. Mills, R.J.; Snieckus, V. J. Org. Chem., 1983, 48, 1565. Sibi, M.P.; Snieckus, V. J. Org. Chem., 1983, 48, 1935. Arylhaloboranes has been recently prepared by ipso desilylation. Haubold, W.; Herdtle, J.; 7. Gollinger, W.; Einholz, W.; J. Organomet. Chem., 1986, 315, 1. These derivatives show interesting ¹H NMR spectroscopic properties, see Lauer, M.; Wulff,
- 8. G. J. Organometal. Chem. 1983, 256, 1; Contreras, R.; Garcia, C.; Mancilla, T. ibid. 1983, 246, 213.
- That metalation had not occurred on the non-functionalized ring of **3** was proved by treat-ment of lithiated **3a**, $Ar^1 = Ph$ with benzaldehyde followed by reaction with HOAc (reflux/6 h) which gave 2,6-diphenylphthalide, mp 92-94°C (hexane); v_{max} (CHCl₃) 1765 cm⁻¹. Metalation of 2-aminobiphenyl has been reported to occur on the bare aromatic ring as 9. evidenced by subsequent reaction with DMF and cyclization to phenanthridine, see Narasimhan, N.S.; Chandrachood, P.S. Synthesis, **1979**, 589. 10. Cram, D.J.; Kaneda, T.; Helgeson, R.C.; Brown, S.B.; Knobler, C.B.; Maverick, E.;
- Trueblood, K.N. J. Am. Chem. Soc. 1985, 107, 3645. 11. All new compounds show analytical and spectral (NMR, IR, MS) data consistent with the
- proposed structures.
- 12. We are grateful to NSERC Canada, Imperial Oil, and Merck Frosst Canada for financial support.

(Received in USA 16 June 1987)